Reconciling The Change In Portfolio Value Over Time

Gary Schurman, MBE, CFA

December, 2020

In this white paper we will build a model to reconcile the dollar change in portfolio value over time. To that end we will use the following hypothetical problem...

Our Hypothetical Problem

We are tasked with building a model to reconcile the change in portfolio value over time. We are given the following go-forward model assumptions...

Table 1: Fund Go-Forward Assumptions

Symbol	Description	Value
P_{0}	Fund value at time zero (\$)	$10,000,000$
μ	Expected annual return (\%)	10.00
σ	Expected return volatility (\%)	20.00
λ	Annualized fees and expenses (\%)	2.00
ϕ	New investment (i.e. reinvestment) (\%)	6.00
ϵ	Sales of investments (i.e. distributions) (\%)	4.00
T	Term in years (\#)	3.00

Our task is to answer the following questions:
Question 1: What is portfolio value at the end of year three given that the random variable drawn from a normal distribution is 0.75 ?

Question 2: Reconcile the change in portfolio value over the three year period.
Note: Assume that the rate variables in the table above are continuous-time rates.

Modeling Portfolio Value Over Time

We will define the variable δW_{t} to be the change in the underlying brownian motion over time. Using the parameters in Table 1 above the stochastic differential equation for the change in portfolio value over the time interval $[t, t+\delta t]$ is...

$$
\begin{equation*}
\delta P_{t}=\mu P_{t} \delta t-\lambda P_{t} \delta t+\phi P_{t} \delta t-\epsilon P_{t} \delta t+\sigma P_{t} \delta W_{t} \ldots \text { where } \ldots \delta W_{t} \sim N[0, \delta t] \tag{1}
\end{equation*}
$$

Note that we can normalize and rewrite Equation (1) above as...

$$
\begin{equation*}
\delta P_{t}=\mu P_{t} \delta t-\lambda P_{t} \delta t+\phi P_{t} \delta t-\epsilon P_{t} \delta t+\sigma P_{t} \sqrt{t} Z \quad \ldots \text { where } \ldots Z \sim N[0,1] \tag{2}
\end{equation*}
$$

The solution to Equation (2) above is the equation for portfolio value at the end of time T, which is...

$$
\begin{equation*}
P_{T}=P_{0} \operatorname{Exp}\left\{\left(\mu-\lambda+\phi-\epsilon-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z\right\} . . \text { where } \ldots Z \sim N[0,1] \tag{3}
\end{equation*}
$$

We will define the variable θ to be the normally-distributed random net annualized rate of return. Using Equation (3) above the equation for the variable θ is...

$$
\begin{equation*}
\theta=\left[\left(\mu-\lambda-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z\right] / T \ldots \text { where } . . Z \sim N[0,1] \tag{4}
\end{equation*}
$$

Using Equation (4) above we can rewrite portfolio value Equation (3) above as...

$$
\begin{equation*}
P_{T}=P_{0} \operatorname{Exp}\{(\theta+\phi-\epsilon) T\} \ldots \text { where... } \theta T \sim N\left[\left(\mu-\lambda-\frac{1}{2} \sigma^{2}\right) T, \sigma^{2} T\right] \tag{5}
\end{equation*}
$$

Using Equation (4) above we can rewrite the Equation (2) above as...

$$
\begin{equation*}
\delta P_{t}=\theta P_{t} \delta t+\phi P_{t} \delta t-\epsilon P_{t} \delta t \ldots \text { where } \ldots \theta \delta t \sim N\left[\left(\mu-\lambda-\frac{1}{2} \sigma^{2}\right) \delta t, \sigma^{2} \delta t\right] \tag{6}
\end{equation*}
$$

Reconciling the Change in Portfolio Value

Note that we can rewrite portfolio value Equation (15) above as...

$$
\begin{equation*}
P_{T}=P_{0}+\int_{0}^{T} \delta P_{u} \delta u \tag{7}
\end{equation*}
$$

Using Equation (6) above we can rewrite Equation (7) above as...

$$
\begin{equation*}
P_{T}-P_{0}=\int_{0}^{T} \theta P_{u} \delta u+\int_{0}^{T} \phi P_{u} \delta u-\int_{0}^{T} \epsilon P_{u} \delta u \tag{8}
\end{equation*}
$$

Using Equation (15) above we can rewrite the first integral in Equation (8) above as...

$$
\begin{equation*}
\int_{0}^{T} \theta P_{u} \delta u=\theta \int_{0}^{T} P_{0} \operatorname{Exp}\{(\theta+\phi-\epsilon) u\} \delta u \tag{9}
\end{equation*}
$$

Using Equation (15) above the solution to the integral in Equation (9) above is...

$$
\begin{equation*}
\int_{0}^{T} P_{0} \operatorname{Exp}\{(\theta+\phi-\epsilon) u\} \delta u=\frac{1}{\theta+\phi-\epsilon} P_{0}[\operatorname{Exp}\{(\theta+\phi-\epsilon) T\}-1]=\frac{1}{\theta+\phi-\epsilon}\left(P_{T}-P_{0}\right) \tag{10}
\end{equation*}
$$

Using Equations (8) and (10) above the equation for portfolio dollar return or loss over the time interval $[0, T]$ is...

$$
\begin{equation*}
\text { Portfolio dollar return or loss }=\int_{0}^{T} \theta P_{u} \delta u=\frac{\theta}{\theta+\phi-\epsilon}\left(P_{T}-P_{0}\right) \tag{11}
\end{equation*}
$$

Using Equations (8) and (10) above the equation for portfolio dollar reinvestment over the time interval $[0, T]$ is...

$$
\begin{equation*}
\text { Portfolio dollar reinvestment }=\int_{0}^{T} \phi P_{u} \delta u=\frac{\phi}{\theta+\phi-\epsilon}\left(P_{T}-P_{0}\right) \tag{12}
\end{equation*}
$$

Using Equations (8) and (10) above the equation for portfolio dollar sales over the time interval $[0, T]$ is...

$$
\begin{equation*}
\text { Portfolio dollar sales }=\int_{0}^{T} \epsilon P_{u} \delta u=\frac{\epsilon}{\theta+\phi-\epsilon}\left(P_{T}-P_{0}\right) \tag{13}
\end{equation*}
$$

The Answers To Our Hypothetical Problem

Question 1: What is portfolio value at the end of year three given that the random variable drawn from a normal distribution is 0.75 ?

Using Equation (4) the equation for the random variable theta is...

$$
\begin{equation*}
\theta=\left[\left(0.10-0.02-\frac{1}{2} \times 0.20^{2}\right) \times 3.00+0.20 \times \sqrt{3.00} \times 0.75\right] / 3.00=0.14660 \tag{14}
\end{equation*}
$$

Using Equations (15) and (14) above the answer to the question is...

$$
\begin{equation*}
P_{3}=10,000,000 \times \operatorname{Exp}\{(0.14660+0.06-0.04) \times 3\}=16,484,041 \tag{15}
\end{equation*}
$$

Question 2: Reconcile the change in portfolio value over the three year period.

Using Equation (11) above the equation for portfolio dollar return or loss over the time interval [0, 3] is...

$$
\begin{equation*}
\text { Portfolio dollar return or loss }=\frac{0.14660}{0.14660+0.06-0.04}(16,484,041-10,000,000)=5,705,657 \tag{16}
\end{equation*}
$$

Using Equation (12) above the equation for portfolio dollar reinvestment over the time interval [0, 3] is...

$$
\begin{equation*}
\text { Portfolio dollar reinvestment }=\frac{0.06}{0.14660+0.06-0.04}(16,484,041-10,000,000)=2,335,153 \tag{17}
\end{equation*}
$$

Using Equation (13) above the equation for portfolio dollar sales over the time interval $[0,3]$ is...

$$
\begin{equation*}
\text { Portfolio dollar sales }=\frac{-0.04}{0.14660+0.06-0.04}(16,484,041-10,000,000)=-1,556,769 \tag{18}
\end{equation*}
$$

